CAM-chem model evaluation of the emissions and distributions of VSLS using TOGA VOC observations from *CONTRAST* and *TORERO*

(in the lower and free troposphere over the eastern and western Pacific)

TOGA and AWAS observations:

Rebecca Hornbrook, Eric Apel, Alan Hills, Dan Riemer, Nicola Blake, Stacey Hughes, Elliot Atlas, Valeria Donets, Sue Schauffler, Rich Lueb

CAM-chem modeling: Jean-Francois Lamarque, Doug Kinnison, Simone Tilmes

CONTRAST-ATTREX-CAST Science Meeting
22-Oct-2014

Photo: ITCZ convection during RF10

VOC tracers from several sources/types:

- Biogenic VOCs and oxidation products
- Anthropogenic VOCs
- Oil and Gas Tracers
- Long-lived Halogenated VOCs
- Short-lived Halogenated VOCs
- OVOCs, including HCHO
- DMS
- Alkyl Nitrates
- Biomass burning tracers (HCN, CH₃CN)

For more information, see these posters this afternoon:

- TOGA and AWAS measurements during CONTRAST
- Inter-comparisons of TOGA and AWAS measurements during CONTRAST

CAM-Chem with VSL Chemistry

CESM CAM-CHEM

- Global Chemistry-Climate Model
- ~1.0° horizontal resolution
- Specified Dynamics Version (GEOS5)
- 56 vertical levels (surface to ~ 2 hPa)

Lamarque et al., Geosci. Mod. Dev., 2012

Tropospheric Halogen Chemistry

Halogenated sources from the ocean.

- Emissions following Chl-a over tropics
- Catalytic release from sea-salt
- Do NOT have polar emission processes
 Chemical Processes
- Photochemistry (CI, Br, and I)
- Dry / wet deposition
- 9 Additional vsl Organic species included.
- 160 species, 427 reactions

Source gas	Global annual flux (Gg yr ⁻¹)		Lifetime
	This study	Literature	(this study)
CHBr ₃	533	400ª, 595 ^b , 448 ^d	17 days
CH_2Br_2	67.3	113 ^c , 62 ^d	130 days
CH ₂ BrCl	10.0	6.8 ^c	145 days
CHBr ₂ Cl	19.7	23°	56 days
CHBrCl ₂	22.6	16 ^c	46 days 🧲
CH ₃ Br*	climatology	131 ^c	1.6 yr ^g
CH ₃ I**	303	304 ^e	5 days
CH ₂ IC1	234	236 ^f	8 h
CH ₂ IBr	87.3	87 ^f	2.5h
CH_2I_2	116	116 ^f	7 min

 $\begin{array}{c} \mathsf{CHBr}_3\\ \mathsf{17 \ days}\\ \mathsf{CH}_2\mathsf{Br}_2\\ \mathsf{130 \ days}\\ \mathsf{CH}_2\mathsf{ICI}\\ \mathsf{8 \ h} \end{array}$

Total Bromine: 632 Gg Br yr⁻¹ Total lodine: 600 Gg I yr⁻¹

Data Coverage: Western and Eastern Tropical Pacific

All **CONTRAST** Flights, Jan - Feb 2014

All TORERO Flights, Jan - Feb 2012

Spatial Distribution: DMS (Dimethyl sulfide, CH₃SCH₃)

CONTRAST-CAST-ATTREX science meeting

Spatial Distribution of VSLS: Dibromomethane (CH₂Br₂)

NCAR/ACD TOGA group

Spatial Distribution of VSLS: Bromoform (CHBr₃)

NCAR/ACD TOGA group

Case Study: Smaller scale convective region north of Guam – CONTRAST RF05, Jan 22

NCAR/ACD TOGA group

VSLS behavior during CONTRAST RF05 – Localized Convection Region

Case Study: Large scale convective region south of Guam – CONTRAST RF12, Feb 17

Flight plan and active convection

Actual Flight Track

CONTRAST-CAST-ATTREX science meeting

VSLS behavior during CONTRAST RF12 – Sustained Convection Region

CAM-chem convection during CONTRAST RF05 and RF12 - DMS

(DMS – lifetime ~ 1 day)

RF05 - no DMS obs in the UT.

- convection present in CAM-chem in region where convection was observed (in acetone, etc.)
- However MBL DMS was predicted to be relatively low.

RF12 - DMS observed in the UT.

- MBL DMS predicted to be > 50 pptv
- Max convection predicted in slightly different region, DMS up to 40 pptv.

NCAR/ACD TOGA group

CAM-chem convection during CONTRAST RF05 and RF12 – CHBr₃

(bromoform – lifetime ~ 17 days)

RF05

- The intrusion of low VSLS air from above was captured by the model.
- In general, BL bromoform was too high in the model, but the aged convection was seen.

RF12

- Without sampling the boundary layer, we can't definitely state that the modeled bromoform was too high in the BL.
- The profiles near Guam were predicted really well by the model.

VSLS behavior during TORERO RF04 & RF05 – S. American Coast v. Oligotrophic Ocean

CAM-chem convection during TORERO RF04 and RF05 - DMS

CONTRAST-CAST-ATTREX science meeting

CAM-chem convection during TORERO RF04 and RF05 – CHBr₃

NCAR/ACD TOGA group

Summary

- Marine boundary layer VSLS concentrations in the CONTRAST study region were lower and less variable than in the eastern Pacific.
- Overall there is good agreement between the observations and CAM-chem.
 For many HCs and OVOCs (not shown), the agreement is excellent.
- For the VSLs, CAM-chem tends to predict higher bromoform and DMS in both the Eastern and Western Tropical Pacific, although the general spatial and vertical trends agree with the observations.

Moving forward:

- Continue to compare model and observations from the other CONTRAST and TORERO flights to better understand the horizontal and vertical distributions of VSLs throughout the Tropical Pacific.
- Use these findings to better constrain the impact of VSLS convection on the UT/LS, and contribute feedback to the model emissions.
- Compare different model resolutions on the convective scale to see what, if any, improvement we can see on the convective modeling.